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ABSTRACT

Berkovich, Chillag and Herzog characterized all finite groups G in which

all the nonlinear irreducible characters of G have distinct degrees. In this

paper we extend this result showing that a similar characterization holds

for all finite solvable groups G that contain a normal subgroup N , such

that all the irreducible characters of G that do not contain N in their

kernel have distinct degrees.

1. Introduction

Let N 6= 1 be a normal subgroup of the finite group G. We write Irr(G|N) for

the set of irreducible characters of G that do not contain N in their kernel. We

also say that (G,N) has property (D), or that G satisfies (D) with respect to

N , if all the irreducible characters of Irr(G|N) have distinct degrees. If N = G′

then (G,G′) has property (D) exactly when all the nonlinear irreducible charac-

ters of G have distinct degrees. These groups have been fully characterized by

Berkovich, Chillag and Herzog in [1]. In particular, they have proved that a non-

abelian group G with the property that all its nonlinear irreducible characters

have distinct degrees is either an extra special 2-group, or a doubly transitive

Frobenius group with a cyclic complement or a doubly transitive Frobenius

group of order 72 having a quaternion complement.

In the present note, we extend their result proving that a similar character-

ization holds for a solvable group G that satisfies property (D) with respect

to a minimal normal subgroup N . In particular we show (for the definition of

Camina pairs see Section 2):
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Theorem A: Assume that G is a solvable group, while N is a minimal normal

subgroup of G of order pn for some prime p. If (G,N) has property (D) then

(G,N) is a Camina pair, with N being the unique minimal normal subgroup of

G. Furthermore, Op′(G) = 1 and the action of any p′-Hall subgroup H of G on

N is Frobenius. In particular (G,N) has property (D) with N < G if and only

if one of the following occurs:

(1) G is a 2-group of order 22m+1 for some integer m ≥ 0, while N = Z(G) is

of order 2. In addition, G affords a unique faithful irreducible character

whose degree is 2m.

(2) G is a Frobenius group with Frobenius kernel N and complement of order

pn − 1 which acts transitively on N#. In this case, G affords a unique

faithful irreducible character of degree pn − 1.

(3) G is neither nilpotent nor Frobenius, but satisfies Op′ (G) = 1 = Z(G). In

addition, if J = Op′

(G) then (J,N) is also a Camina pair.

Observe that if G satisfies property (D) with respect to MEG, then G satisfies

(D) with respect to N for every normal subgroup N of G with N ≤ M (since

Irr(G|N) ≤ Irr(G|M) when N ≤ M). Hence Theorem A characterizes the

solvable groups that satisfy property (D) with respect to some normal subgroup

M .

The groups of type (3) in Theorem A, have been already classified by Kuisch

in [9], where he proves, see Theorem B in [9], the following:

Theorem 1 (Kuisch): Let (G,N) be a Camina pair, G a solvable group and

N a p-group. Then Op′(G) = 1. If J = Op′

(G) then (J,N) is also a Camina

pair and one of the following holds:

(i) J ∈ Sylp(G), or

(ii) Op(J) = Op(G), Op,p′,p(J) = J,Op,p′(J)/Op(J) is cyclic of odd order,

J/Op,p′(J) is an abelian p-group, and J/Op,p′(J) acts fixed point-freely

on Op,p′(J)/Op(J), or

(iii) p = 3, O3(J) = O3(G), O3,3′,3(J) = J,O3,3′(J)/O3(J) is the direct prod-

uct of a quaternion group of order 8 and a cyclic of odd order, J/O3,3′(J)

is abelian, and

[J/O3,3′(J), O3,3′(J)/O3(J)] = O3,3′(J)/O3(J).

Hence, if G is a solvable group that satisfies (D) with respect to a minimal

normal subgroup N , then G is either a 2-group or a Frobenius group or one of

the 3 types of groups that appear in Kuisch’s list. Even though we have a clear

image of the groups of type (i) in this list that in addition have property (D),
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see Corollary 1 of Section 2 below, we are quite uncertain how the other two

types can coexist with property (D), as we have not been able to construct such

examples.

Theorem A was inspired by the paper [2] of Berkovich, Isaacs and Kazarin

(see Corollary 4.5 in [2]) where under the same hypothesis of Theorem A several

properties of the solvable group G are given. The key tool in proving Corollary

4.5 in [2], along with many other interesting theorems, was the following result

(Theorem E in [2]):

Let N E G be a p-group while G/N is solvable, and let θ ∈ Irr(N) be G-

invariant. If the members of Irr(G|θ) have distinct degrees then | Irr(G|θ)| = 1,

and G is a p-group.

It turns out that this is a case of the following conjecture formed by Higgs in

[6].

Conjecture 1: Let N EG and θ ∈ Irr(N) be G-invariant. If all the members

of Irr(G|θ) have distinct degrees then there is only one irreducible character of

G lying above θ.

In the same paper ([6]) Higgs proved his conjecture when G is supersolvable

or has odd order. His methods use projective characters (actually the conjecture

itself was also formed in terms of projective characters). In the last section of

this note we give a different proof of Higgs’s results. In particular we prove

Theorem 2: Let G be a finite group, N a normal subgroup of G and θ an

irreducible G-invariant character of N . Assume further that all irreducible char-

acters of G lying above θ have distinct degrees. If G/N is a supersolvable group

then θ is fully ramified in G/N .

Theorem 3: Let G be a finite group, N a normal subgroup of G and θ an

irreducible G-invariant character of N . Assume further that all irreducible char-

acters of G lying above θ have distinct degrees. If G/N has odd order then θ is

fully ramified in G/N .

Acknowledgements: I would like to thank E. C. Dade for his valuable re-

marks that improved the original version of this note. I would also like to thank

M. Isaacs for pointing out Corollary C and Lemma 6.1 in [8], thus simplifying

my proofs.
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2. Pairs (G,N) that satisfy property (D)

Let N 6= 1 be a normal subgroup of the finite group G. We say the (G,N) is a

Camina pair if it satisfies the following hypothesis:

(F2) If x ∈ G \N , x is conjugate to xy for all y ∈ N .

Camina pairs were first introduced by Camina in [3]. For their definition Camina

used in [3] a character-theoretic approach (see hypothesis (F1) in [3]), and proved

that his definition is equivalent to hypothesis (F2) above. In [4], Proposition

3.1, Chillag and Macdonald showed that (G,N) is a Camina pair if and only if

for every x ∈ G \ N we have |CG(x)| = |CG/N (xN)|. (In their terminology a

Camina pair (G,N) is said to be a pair that has (F2).)

Lemma 1: LetNEG, where N is a p-group and G/N is solvable. Let θ ∈ Irr(N)

be G-invariant and assume that the members of Irr(G|θ) have distinct degrees.

Then θ is fully ramified in G/N and G is a p-group.

Proof: Theorem E in [2]

The following is part of Corollary 4.5 in [2].

Lemma 2: Assume that (G,N) has property (D), with N a minimal normal p-

subgroup of a nonabelian solvable group G. Then every nonprincipal character

λ of N is fully ramified in G(λ)/N . So for every such λ, the group G(λ) is a

p-group. Hence the action of any p′-subgroup Q of G on N is Frobenius. In

addition, if λ, µ are nonprincipal linear characters of N whose stabilizers have

equal order in G then they are G-conjugate.

Remark 1: Observe that since every nonprincipal character λ of N is fully

ramified with respect to G(λ)/N , there is only one irreducible character of G

lying above the G-conjugacy class of λ.

Lemma 3: Assume that (G,N) has property (D), with N a minimal normal

p-subgroup of a nonabelian solvable group G. If N ≤ Z(G) then N = Z(G)

has order 2, while G is a 2-group of order 22m+1 for some integer m ≥ 1.

Furthermore, N is the unique minimal normal subgroup of G, while G affords

a unique faithful irreducible character. Its degree is 2m.

Proof: If N ≤ Z(G) then every irreducible character of N is G-invariant.

Let λ ∈ Lin(N) be a nonprincipal linear character of N . If χ ∈ Irr(G) is the

unique irreducible character that lies above λ, then χ(1) = |G : N |1/2. If N

is properly contained in Z(G), then λ extends to Z(G). Let λ′ ∈ Lin(Z(G))
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be such an extension. Then λ′ is also fully ramified in G/Z(G), as χ is the

unique character of G above it, and thus χ(1) = |G : Z(G)|1/2. We conclude

that N = Z(G). Furthermore, because (G,N) has property (D), we can only

have one irreducible character of G of degree |G : N |1/2. Thus the order of N

is 2. In addition |G : N | = 22m for some m ≥ 1. Note also that the irreducible

character of G that lies above the nonprincipal character of N is the only faithful

character of G.

We can now prove Theorem A.

Proof of Theorem A: Assume that the pair (G,N) satisfies property (D), where

G is a nonabelian group. So G > N .

Since every nonprincipal linear character λ of N is fully ramified with respect

to G(λ)/N , every irreducible character ofG that lies above such a λ is not linear.

Hence every linear character of G restricts trivially on N , and thus N ≤ G′.

Note also that Lemma 2 implies that the action of any p′-subgroup of G on

Irr(N) and thus on N is Frobenius.

Step 1: N is the unique minimal normal subgroup of G.

Proof: Assume not. Let M be another minimal normal subgroup of G. Then

N centralizes M . Let λ be a nontrivial linear character of N . Then M ×N is

a subgroup of G(λ). The linear character α = 1M × λ of M ×N has the same

stabilizer in G as λ. Furthermore, there is only one irreducible character θ of

G(λ) = G(α) lying above λ, and thus above α, since λ is fully ramified. Thus

α is also fully ramified with respect to G(λ)/(M ×N). This forces the degree

of θ to equal |G : NM |1/2 = |G : N |1/2. Hence M = 1, and the claim is proved.

Since N is the unique minimal normal subgroup of G, it is contained in the

kernel of every nonfaithful irreducible character of G. Thus the set Irr(G|N)

consists of the faithful irreducible characters of G, while every other irreducible

character of G has N in its kernel.

Step 2: (G,N) is a Camina pair.

Proof: Let χ ∈ Irr(G|N) and assume that λ ∈ Lin(N) lies under χ. If θ is any

nonfaithful character of G then θχ is a character of G whose restriction to N

equals θ(1) · χN . Hence θχ lies above the G-conjugacy class of λ. In view of

Lemma 2 only χ lies above the G-conjugacy class of λ. So θχ = θ(1)χ. Hence

χ(g) = 0 for all g ∈ G \Ker(θ). Since this is true for all θ with N ≤ Ker(θ), we
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have that χ vanishes off

⋂
{Ker(θ)|θ ∈ Irr(G), N ≤ Ker(θ)} = N.

Hence every character of Irr(G|N) vanishes off N . Now assume that x ∈ G \N .

Then

|CG(x)| =
∑

{θ∈Irr(G)|N≤Ker(θ)}

(|θ(x)|2) + 0 = |CG/N (xN)|.

This proves the claim.

Step 3: If G is a nilpotent group then it is of type (1).

Proof: Let G be a nilpotent group. Then it is a p-group, since the action of

any p′-subgroup Q of G on N is Frobenius. Because N is minimal normal we

have N ≤ Z(G). Now Lemma 3 implies that G is of type (1), and the claim

follows.

Since G affords a faithful irreducible character its center Z(G) is either cyclic

or trivial. If Z(G) is nontrivial then N ≤ Z(G) since N is a unique minimal

subgroup of G. So Lemma 3 implies that G is of type (1). Hence Z(G) = 1.

Assume now thatG is a Frobenius group with kernelN . So every nonprincipal

character of N induces irreducibly to G. Since (G,N) has property (D) we must

have only one element in Irr(G|N). So if χ ∈ Irr(G|N) then χ lies above the

|N | − 1 nonprincipal linear characters of N . Since the degree of χ = λG equals

|G : N |, we conclude that |G : N | = |N | − 1. So G is of type (2).

Finally, if G is neither a Frobenius group with kernel N nor a nilpotent group,

then Kuisch’s theorem (Theorem 1) implies that G is of type (3). This completes

the proof of the theorem.

Corollary 1: If G is of type (3) with J = Op′

(G) being a p-Sylow subgroup

of G, then G = HP where H is a p′-Hall subgroup of G of order pn − 1,

while the action of H on N is Frobenius and it is transitively on N#. In

addition, Irr(G|N) consists of a unique irreducible character whose degree equals

(pn − 1)(|P |/pn)1/2.

Proof: Let G be of type (3) and let J be a p-Sylow subgroup of G. (In

view of the notation in [4], (G,N) is said to have F2(p) with N a p-group.)

Let J = P be the normal p-Sylow subgroup of G; then Proposition 3.4 in [4],

implies Z(P ) ≤ N . So Z(P ) = N , because N is minimal. According to Lemma

4.3 in [4], if H is a p′-Hall subgroup of G, then HN is a Frobenius group.
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Since N = Z(P ) every irreducible character ofN is P -invariant. Furthermore,

as P is a p-Sylow subgroup of G, Lemma 2 implies that G(λ) = P for every

nonprincipal linear character λ ∈ Lin(N). Hence all the nonprincipal linear

characters of N form a single G-orbit. In view of Remark 1, we conclude that

we only have one character χ ∈ Irr(G|N). Note that

χ(1) = |G : P ||P : N |1/2 = |H ||P : N |1/2.

In addition, because G = HP and P centralizes N , the single G-orbit of

Lin#(N) is a single H-orbit. Since HN is a Frobenius group we conclude

that we only have one irreducible character θ ∈ Irr(HN |N). Furthermore,

θ(1) = |H | = pn − 1.

3. Irreducible characters of distinct degrees over an invariant char-

acter

We start with the following known result (see Lemma 12.5 in [10])

Lemma 4: Let (G,N, θ) be a character triple. Assume further that θ is fully

ramified in G/N while G/N is an abelian group. Then G/N = C1 × C2 where

C1
∼= C2.

We first prove the supersolvable case.

Proof of Theorem 2: Work using induction on |G| and then on |G : N |. Let s

be the number of irreducible characters of G lying above θ. (So s > 1.)

Repeated applications of Clifford’s theory along with the inductive hypo-

thesis imply that N is a cyclic central subgroup of G while θ is a linear faithful

character.

The main step of the proof is the following.

Claim 1: s = 2, and if {χ1, χ2} = Irr(G|θ) then χ1(1) = (|G : N |/p)1/2 and

χ2(1) = (p− 1)1/2 · (|G : N |/p)1/2, where p is a prime divisor of a chief section

M/N of G.

Proof: Let M/N be a chief section of G with |M : N | = p. Let φ1, φ2, . . . , φp

be all the distinct extensions of θ to M . If G(φi) is the stabilizer of such an

extension to G, then Clifford’s theorem implies that induction defines a bijection

between Irr(G|φi) and Irr(G(φi)|φi). Since every character in Irr(G|φi) lies

above θ, we conclude that all the irreducible characters of G(φi) lying above φi

have distinct degrees. Hence the inductive hypothesis implies that there exists
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only one character of G(φi) lying above φi. We conclude that there exists only

one irreducible character of G above every G-orbit of φi. Thus s = | Irr(G|θ)|

equals the number of orbits of the action of G on the set of irreducible characters

φ1, . . . , φp. Let φ1, φ2, . . . , φs be a representative for each one of these orbits.

Of course if the index of G(φi), for some i = 1, . . . , s, in G is p, then we only

have one orbit and the theorem holds. So we assume that |G : G(φi)| 6= p for all

i = 1, . . . , s. Let ψi for i = 1, . . . , s be the unique irreducible character of G(φi)

that lies above φi and induces irreducibly to G. Furthermore, let χi = ψG
i , for

all i = 1, . . . , s. So {χi}
s
i=1 are all the irreducible characters of G lying above θ.

Note that the inductive hypothesis also implies that ψi(1) = |G(φi) : M |1/2 ·

φi(1), since φi is fully ramified in G(φi)/M , for all i = 1, . . . , s. Because φi

induces χi to G we get

χi(1) = |G : G(φi)| · |G(φi) : M |1/2 · φi(1),

for all i = 1, . . . , s. But χi(1) are all distinct, so we conclude that |G : G(φi)|

are also distinct for all i = 1, . . . , s.

Let H/N be a p′-Hall subgroup of G/N . Then H/N acts on Irr(M/N) as

it acts on M/N . It also acts on the set Irr(M |θ). In addition, the group

Irr(M/N) of linear characters acts transitively on Irr(M |θ) by multiplication.

Hence Glauberman’s lemma implies that there exists an irreducible character in

the set Irr(M |θ) that is H/N -invariant. Let φ1 be such. So the index of G(φ1)

in G is a power of p. Thus it is either 1 or p. It cannot be p or else all the φi,

for i = 1, . . . , p, form a single G-orbit. Hence φ1 is G-invariant. As we have a

unique irreducible character χ1 in G = G(φ1) above φ1, we conclude that

χ1(1) = |G : M |1/2 = (|G : N |/p)1/2.

According to Gallagher’s theorem (Corollary 6.17 in [7]), distinct linear char-

acters λ ∈ Irr(M/N) provide distinct irreducible characters λ · φ1 of M ly-

ing above θ. So G(φ1) ∩ G(λφ1) ≤ G(λ), for all such λ. On the other hand

G(λ) ≤ G(φ1) ∩ G(λφ1), because G(φ1) = G. We conclude that
⋂p

i=1G(φi) =⋂p
i=1G(λi). The latter group equals CG(M/N) and thus

(1)

p⋂

i=1

G(φi) = CG(M/N) = C.

The group G/C acts faithfully and irreducibly on the p-group M/N . So

G/C is a subgroup of Aut(M/N), and thus G/C is a cyclic group whose or-

der is a divisor of p − 1. In addition, G/C acts faithfully and irreducibly on
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V = Irr(M/N). Since G/C is cyclic every nontrivial orbit in V = Irr(M/N) has

size |G/C|. It is easy to see that there is a one-to-one correspondence between

the G-orbits of V and the G-orbits of all the extensions φ1, λ1φ1, . . . , λp−1φ1

of θ to M , where λ0 = 1 corresponds to φ1 and the size of two corresponding

orbits is the same. Hence all the G-orbits of φi, for i = 2, . . . , p, have size

|G/C|. As these orbit sizes are distinct we conclude that φ2, . . . , φp−1 form a

single G-orbit, while C = G(φi), for i = 2, . . . , p and |G : C| = p− 1.

So s = 2 and we have only one irreducible character χ2 ∈ Irr(G) lying above

φ2, . . . , φp, and induced from ψ2 ∈ Irr(C). As φ2 is fully ramified in C/M we

conclude that

χ2(1) = (p− 1) · |C : M |1/2 = (p− 1)1/2 · (|G : N |/p)1/2.

Hence Claim 1 follows.

According to Corollary C in [8], if we only have two irreducible characters

χ1, χ2 of G lying above an irreducible character of a normal subgroup N of G

then χ1(1) = χ2(1). This contradicts Claim 1, and thus the theorem follows.

The following is Lemma 2.1 in [5]

Lemma 5: Let G be a finite group of odd order having a faithful and irreducible

quasiprimitive module V over a finite field F of odd characteristic. If F (G) in

noncyclic, then V contains at least two regular G-orbits.

Using the above lemma we can prove

Lemma 6: Assume that G is a finite group of odd order that acts irreducibly on

a nontrivial F -vector space V , where F is a field of odd characteristic. Assume

further that the orbits of G on V have distinct sizes. Then G acts transitively

on V − {0} = V ∗.

Proof: Work using induction on |G| and on dimF V . Let G, V be a smallest

counterexample. We can assume that G acts faithfully on V .

Let E be a splitting field for G with F ≤ E . Write V E = V ×F E . Then

V E = W1 ⊕ · · · ⊕ Wk, where Wi are nonisomorphic irreducible EG-modules,

conjugate under the Galois group of the field extension E : F . Furthermore, the

orbits of G on each Wi have distinct sizes since these are some of the orbits of G

on V . Hence the inductive hypothesis implies that G acts transitively on W ∗
i ,

for all i = 1, . . . , k. If k ≥ 2 then we would get exactly k orbits of G on V of size
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W ∗
1 , which contradicts the hypothesis of the lemma. We are done by similar

arguments to those used for the supersolvable case. Thus we may assume that

k = 1 and thus V is an absolutely irreducible F(G)-module.

Let N be a normal subgroup of G. Then Clifford’s theorem implies that

VN = U1 ⊕ U2 ⊕ · · · ⊕ Un, where Ui are the homogeneous components of VN .

Let I be the inertia subgroup of U1 in G. Then U1 is an irreducible FI-module,

while Ui = U1 · gi, for some gi ∈ G − I for all i = 1, . . . , n, and n = |G : I|. If

O is an orbit of the action of I on U1, then the union
⋂n

i=1(O · gi) is actually

a full orbit of the action of G on V , say Ω. So |Ω| = n · |O|. This way we get

a one-to-one correspondence between the orbits of G on V and those of I on

U1. We conclude that the orbits of the action of I on U1 have distinct sizes.

Thus the FI irreducible module U1 satisfies all the hypothesis of the lemma.

So I acts transitively on U∗
1 , which implies that G acts transitively on V ∗.

This contradicts the inductive hypothesis. Hence we get that V is a primitive

FG-module.

So V is a primitive irreducible faithful FG-module. If F (G) is not cyclic then

Lemma 5 implies that V contains at least two regularG-orbits. But the G-orbits

all have distinct sizes, and thus F (G) is a cyclic group. Since V is an absolutely

irreducible faithful primitive FG-module, all the abelian normal subgroups of

G are cyclic and central. We conclude that F (G) is a cyclic central subgroup of

G. But G is solvable hence CG(F (G) ≤ F (G). So G = F (G) is a cyclic group.

Now V is an absolutely irreducible faithful FG-module where G is a cyclic

group. Then dimF V = 1, and F contains a primitive t-th root of 1, where

t = |G|. Furthermore, there exists a primitive t-th root of 1, ζ ∈ F so that

vg = ζv, where g is a generator of G and v is any element of V . Then the

elements {v, ζv, ζ2v, . . . , ζt−1v} are all distinct and form a G-orbit of V of size

t. This is true for any v ∈ V ∗, but we cannot have more than one orbit of size

t. Hence we only have one such orbit and thus G acts transitively on V ∗. Note

also that |V | = |G| + 1.

We can now prove Theorem 3 that we restate as

Theorem: Let G be a finite group, N a normal subgroup of G and θ an irre-

ducible G-invariant character of N . Assume further that all irreducible charac-

ters of G lying above θ have distinct degrees. If G/N has odd order then θ is

fully ramified in G/N , that is, there exists only one irreducible character of G

lying above θ.
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Proof: We use induction on |G| and then on |G : N |. Without loss we can

assume that N is a cyclic central subgroup of G while θ is a G-invariant faithful

character of N .

The character θ is either fully ramified with respect to the chief section M/N

or it extends to M . In the first case we are done by induction. If φ is the unique

irreducible character of M above θ, then φ is G-invariant and all the characters

of G above it have distinct degrees.

So assume that θ extends to M . Let |M/N | = pn, where p is an odd prime

number. We also write φ1, . . . , φpn for the extensions of θ to M . Then all

the irreducible characters of G(φi) lying above φi have distinct degrees, for all

i = 1, . . . , pn. Hence induction implies that the character φi is fully ramified

in its stabilizer G(φi), for all i = 1, . . . , pn. Therefore there exits only one

irreducible character of G above every G-orbit of φi. So if s = | Irr(G|θ)|, then

s is also the number of orbits of the G-action on {φi}
pn

i=1. Let φ1, . . . , φs be

a representative of each one of these orbits. Observe that every G-orbit has

size |G : G(φi)|, where φi is its representative, for some i = 1, . . . , s, while the

corresponding irreducible character χi of G lying above that φi has degree

χi(1) = |G : G(φi)| · |G(φi) : M |1/2,

for all i = 1, . . . , s. Hence the G-orbits on {φi}
pn

i=1 have distinct sizes.

Case 1: Assume there exists an i = 1, . . . , s so that φi is G-invariant.

Let φ1 = φ be a G-invariant extension of θ to M . According to Gallagher’s

theorem (Corollary 6.17 in [7]), distinct linear characters λ ∈ Irr(M/N) provide

distinct irreducible characters λ·φ ofM lying above θ. SoG(φ)
⋂
G(λφ) ≤ G(λ),

for all such λ. On the other hand G(λ) ≤ G(φ)
⋂
G(λφ), because G(φ) = G.

We conclude that
⋂pn

i=1G(φi) =
⋂pn

i=1G(λi). The latter group equals CG(M/N)

as M/N is an elementary abelian group, and thus

pn⋂

i=1

G(φi) = CG(M/N) = C.

The group G/C acts faithfully and irreducibly onM/N . So it acts faithfully and

irreducibly on V = Irr(M/N). We consider the latter as a finite vector space

over Fp. It is easy to see that there is a one-to-one correspondence between the

G-orbits of V and the G-orbits of all the extensions φ, λ1φ, . . . , λpn−1φ of θ to

M , where λ0 = 1 corresponds to φ and the size of two corresponding orbits is the

same. Hence all the G-orbits of V have distinct sizes. Then Lemma 6 implies

that G/C acts transitively on V ∗. So we have only two orbits, the trivial one
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and another one of length pn − 1. Thus we only have two irreducible characters

χ1, χ2, lying above θ. Hence Corollary C in [8] implies that χ1(1) = χ2(1),

contradicting the assumptions of the theorem. Hence we can only have one

irreducible character of M lying above θ in this case, and thus the theorem

follows.

Case 2: For all i = 1, . . . , pn, we have G(φi) < G.

First note that p divides |N |. If not, then Corollary 6.28 in [7] implies that

θ has a unique canonical extension φ ∈ Irr(M) such that o(φ) = o(θ). Since θ

is G-invariant the uniqueness of φ makes it also G-invariant. So we are back to

Case 1. Hence p/|N |.

Let H/N be a p′-Hall subgroup of G/N . Then H/N acts on Irr(M/N) as

well as on Irr(M |θ). The group Irr(M/N) acts transitively on Irr(M |θ) by

multiplication. Hence Glauberman’s lemma implies that there exists φ1 above

θ with |G : G(φ1)| = ps, for some 0 < s < n. Let χ1 be the unique irreducible

character of G lying above φ1. Then

χ1(1) = p−t/2 · (|G : N |)1/2,

where t = n− s > 0. Now assume we can find another chief section K/N of G

with |K : N | = qn′

, for some prime q 6= p. Then χ1 lies above some extension

character φ′1 ∈ Irr(K|θ). Note that G(φ′1) < G or else we would be in Case 1

for the chief section K/N . So, as earlier, φ′1 is fully ramified in G(φ′1)/K, and

the unique irreducible character ψ′
1 of G(φ′1) lying above φ′1 induces irreducibly

to χ1. So

p−t/2 · (|G : N)1/2 = χ1(1) = |G : G(φ′1)| · (|G(φ′1) : N |/qn′

)1/2

= (|G : N |)1/2 · (|G : G(φ′1)|)
1/2 · q−n′/2,

which implies that qn′

= |G : G(φ′1)| · p
t. This is impossible if p 6= q. We

conclude that Op′(G/N) = 1. Thus, if F is the Fitting subgroup of G then

F = Np′ × P , where P = Op(G) > Np.

Claim 2: Every characteristic abelian subgroup of P is cyclic.

Assume not. Then we can find an abelian characteristic subgroup A of F

containing N that is not cyclic. Hence there exists an abelian noncyclic normal

subgroup L of G such that L = N×E ≤ N ·Ωp(P )EG, where E is an elementary

abelian p-group of order pk for some k = 1, 2, . . ., and L/N is a chief section of

G.
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Let ψi, for i = 1, . . . , pk, be the extensions of θ to L. Then G(ψi) < G, for

all i = 1, . . . , pk, or else we would be done by Case 1. Furthermore, there exists

an extension, say ψ1, of θ to L, such that |G : G(ψ1)| is a power of p. Clearly

|G : G(ψ1)| < pk, or else {ψi}
pk

i=1 form a unique G-conjugacy class, which implies

the theorem.

Let S = CG(L/N). Then S = CG(L). Assume not, and let

X = CG(L/N)/CG(L).

It is easy to see that CG(L/N) ∩ G(ψ1) = CG(L). Hence |X | = |(G(ψ1) ·

CG(L/N))/G(ψ1)| ≤ |G : G(ψ1)| < pk. Hence X is a p-group of order strictly

less than pk. Because E is an elementary abelian p-group of order pk, there

exists e1, . . . , ek ∈ E of order p so that E =
∏k

i+1〈ei〉. Let x ∈ X . Then for

every i = 1, . . . , n there exists ni,x ∈ N so that

ex
i = ni,xei.

Hence for every i = 1, . . . , k, we get a group homomorphism fi: X → N so

that fi(x) = ni,x. Let Ki be the kernel of fi. Then
⋂k

i=1Ki = 1, because X

acts faithfully on L = NE while N is central in G. Hence the map f : X → Nk

defined as f(x) = (f1(x), f2(x), . . . , fk(x)) is a group monomorphism. Therefore

X is isomorphic to a subgroup Y of Nk of order strictly less than pk. On the

other hand |Y | is the product of the orders of the images |fi(X)|, for i = 1, . . . , k.

Since |fi(X)| = |X |/|Ki| is a power of p, we conclude that there exists some i

such that Ki = X . Hence there exists some i so that X centralizes the cyclic

subgroup 〈ei〉 of E. This in turn implies that CL(X) > N . But CL(X) is

a G-invariant subgroup of L. Since L/N is a chief section, we conclude that

CL(X) = L and thus X = 1.

Assume that R/S is a chief factor of G. Then CL/N (R/S) is a G-invariant

subgroup of L/N . As L/N is a chief factor of G, we conclude that CL/N (R/S)

is trivial. Hence R/S is a q-group, for some prime q 6= p.

The group R/S acts faithfully on Irr(L/N) as well as on Irr(L|θ). Further-

more, Irr(L/N) acts transitively on Irr(L|θ). Hence Glauberman’s lemma im-

plies that there exists ψ1 ∈ Irr(L|θ) that is R/S-invariant. Since S = CG(L)

fixes ψ1, we conclude that ψ1 is R-invariant. Hence R fixes all the G-conjugates

of ψ1. Therefore R, and thus R/S, fixes more than one character in Irr(L|θ)

(because G(ψ1) < G). Glauberman’s lemma implies that CIrr(L/N)(R/S) acts

transitively on the set of fixed points of R/S on Irr(M |θ). So CIrr(L/N)(R/S)

is not trivial. This in turn implies (because L/N is abelian) that CL/N (R/S) is
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not a trivial group. This final contradiction shows that L is a cyclic group. So

N · Ωp(P ) = N , and thus every abelian characteristic subgroup of F is cyclic.

So F = N · P = Np′ × P , where P = UZ and U is either an extra special

p-group of exponent p or cyclic of order p and Z = CP (U) = Z(P ) is a cyclic

group.

Assume first that Z = Np. If F > N , that is |U | > p, then the fact that

θ ∈ Irr(N) is faithful implies that there exists a unique irreducible character of

F lying above θ. In this case we are done by induction. If F = N , then because

N ≤ Z(G) and G is solvable we get that G ≤ CG(F ) ≤ F . Hence G = F = N

and the theorem follows.

Assume now that Z > Np. Then the fact that Z = Z(P ) is a cyclic group

implies that we can get a normal subgroup M of G with F ≥ M > N and

|M/N | = p. Observe that Glauberman’s lemma implies that there exists an

extension φ of θ to M whose stabilizer G(φ) has index |G : G(φ)| a power of p.

Thus φ is G-invariant and we are back to Case 1.

This completes the proof of the theorem.

As remarked by E. C. Dade, Lemma 6 can be replaced by the following more

general lemma.

Lemma 7: If a group G of odd order acts on a nontrivial vector space V over a

finite field F of odd characteristic, then there are always two G-orbits of equal

length in V ∗ := V − {0}.

The above lemma gives a shorter proof of our Theorem 3. (For its proof, note

that the orbit of any nonzero element v in V ∗ has the same size as the orbit

of −v 6= v. So the G-orbits on V ∗ appear in pairs of the same length.) The

reason we kept Lemma 6 in this paper is that some type of generalization seems

possible. This in turn could give a proof of the Higgs conjecture in the even

case. Actually, Berkovich, Isaacs and Kazarin have already shown (see Theorem

3.4 in [2]) that if a 2-group P acts irreducibly on a nontrivial vector space V so

that the orbits of this action have distinct sizes, then either P acts transitively

on V ∗, or there are two orbits of P on V ∗ of sizes 22k and 22l+1, with k, l > 0,

or |V | = 81 and there are exactly two P -orbits on V ∗ of known sizes.

The following is Lemma 6.1 in [8] and was brought to our attention by

M. Isaacs.

Lemma 8: Let N be a normal subgroup of the p-solvable group G and θ be a

G-invariant irreducible character of N . If M/N is a p-chief section of G and

C = CG(M/N), then either
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(1) some member φ ∈ Irr(M |θ) is G-invariant, or

(2) C is transitive on the set Irr(M |θ).

This provides another way to show that we only need to handle Case 1 in

Theorem 3.
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